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Spectrum of self-avoiding walk exponents
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A short range interaction is incorporated into the self-avoiding walk~SAW! model of polymer chains by
partitioning SAW’s into equivalence classes of chain configurations havingm nearest-neighbor contacts, and
performing an energetically weighted averaging over these restricted SAW configurations. Surprisingly, there
have been limited studies of the geometrical properties of ‘‘contact-constrained’’ SAW configurations, which
contrasts with the well studied unrestricted SAW’s. Accordingly, we generate Monte Carlo data for the total
number of SAW configurationsCn,m having a fixed number of contactsm for chains of lengthn on square and
cubic lattices. Applications of the standard ratio method to theCn,m data shows auniqueconnectivity constant
m ~NAW!, corresponding to neighbor-avoiding walks~m50!, and a ‘‘spectrum’’ ofg exponents which depend
on the contact numberm. The asymptotic scaling of the number of contact-constrained SAW’s is found to be
similar to the number of lattice animals and random plaquette surfaces having a fixed cyclomatic indexc and
genusg, respectively. The existence of this common structure is promising for the development of an analytic
theory of interacting polymers and surfaces.@S1063-651X~97!10101-5#

PACS number~s!: 05.50.1q, 05.70.Fh
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I. INTRODUCTION

There have been numerous studies of the propertie
self-avoiding walks~SAW’s!, and many of their propertie
have become established, at least numerically. For exam
an extensive body of theory and numerical data indicates
the total number of SAW configurationsCn of lattice walks
of lengthn scales asymptotically as@1–6#

Cn;@m~SAW!#nng21, n→`, ~1.1!

wherem~SAW! is the SAW ‘‘connectivity constant,’’ andg
is the SAW ‘‘susceptibility’’ exponent. Rigorous results in
clude a proof of the existence ofm~SAW! @1#, 1/d expan-
sions ofm~SAW! @2#, and a proof thatg51 for high dimen-
sionalities,d>5 @3#. Moreover, formal conformal invarianc
calculations indicateg543/32 in the non-trivial case ofd52
@7#, and it is evident thatg51 for d51. Numerical data for
m~SAW! and g as a function ofd for hypercubic lattices
have recently been summarized@4–6#.

The theoretical treatment of interacting polymers requi
further information about the properties of SAW’s, howev
A short-range interaction is incorporated into the SA
model of polymer chains by partitioning SAW configuratio
into equivalence classes corresponding to a fixed numbem
of nearest-neighbor contacts@8#. Chain properties are the
calculated by performing an energetically weighted aver
ing of these constrained SAW configurations@5,8#. This re-
stricted SAW data contain important information such as
location of theu-temperature, where attractive interactio
begin to predominate over repulsive polymer-polymer int
actions@9–12#. Theu-point g exponent and the radius of th
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gyration exponentn are also contained in this SAW data, an
these quantities have been estimated by a variety of meth
@11,13–17#.

Surprisingly, there have been few studies of SAW’s ha
ing a fixed number of contactsm, except for them50 case
corresponding to ‘‘neighbor-avoiding walks’’@18#, and usu-
ally these types of data are averaged to determine othe
formation about polymers with nearest-neighbor~NN! inter-
actions ~critical exponents, connectivity constant, intern
energy, specific heat, etc.! @6,8,10,11#. Contact-constrained
SAW data are often not even reported.

It seems clear that if we can understand the asympt
variation of the contact-constrained SAW properties, th
this should open the way to further analytical progress
describing interacting SAW’s and other closely related l
tice models. Accordingly, we generate accurate numer
data for the total number of SAW configurationsCn,m having
a fixed number of contactsm by Monte Carlo~Rosenbluth
and Rosenbluth@19#! methods, and analyze these data us
the ratio method as for unrestricted SAW data@11,20#.

A similar scaling for theCn,m data to Eq.~1.1! is found in
our data analysis, except that the connectivity constant
responds to neighbor-avoiding walksm~NAW! @5,18# for all
m, andg is found to depend on the contact numberm. This
nontrivial scaling of the contact-constrained SAW’s is sim
lar to the asymptotic scaling for the number of lattice a
mals and random plaquette surfaces having a fixed cylom
index c and genusg, respectively@21–24#, and the connec-
tion between these problems is considered in Sec. III.

II. CONTACT-CONSTRAINED SELF-AVOIDING WALKS

Although SAW’s have no self-intersections by definitio
there can be NN contacts corresponding to adjacent vert
of the SAW path which are not connected by a bond of
chain path. An energetic interaction is incorporated into
SAW model by associating a Boltzmann weight with the
738 © 1997 The American Physical Society
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55 739SPECTRUM OF SELF-AVOIDING WALK EXPONENTS
contacts. Thus we arrive at the general problem of sor
SAW configurations into equivalence classes having a c
mon contact numberm, and of counting the number of thes
contact-constrained SAW configurations by direct enume
tion or Monte Carlo~MC! sampling.

In previous papers the exact SAW partition function f
interacting chains up to a chain lengthn511 ind dimensions
@5# was calculated, and the partition functionQn of the NN-
interacting SAW is obtained in the form of a polynomi
@5,8#,

Qn~x!5 (
m50

mmax

Cn,mx
m, x5exp~F!, ~2.1!

whereF is the dimensionless NN interaction energy descr
ing the polymer self-interaction~Positive values correspon
to attractive interactions, while negative values to repuls
ones.!. Cn,m , the number of SAW’s of lengthn having ex-
actly m contacts, are polynomials ind, and the sum in Eq
~2.1! is limited by the maximum number of NN-chain con
tactsmmax @6#.

Some special limits of Eq.~2.1! have been extensivel
studied. For example, the limit of a vanishing polyme
polymer interaction ~x→1! corresponds to unrestricte
SAW’s, so thatQn(x51)[Cn and the asymptotic scalin
prescribed in Eq.~1.1! must be recovered. Known results fo
Cn provide useful tests of our MC data below. Another w
studied limit corresponds to a strongly repulsive interact
~F→2`!, where the sum in Eq.~2.1! reduces to a single
athermal term

Qn~F→2`!;Cn,0 . ~2.2a!

Asymptotically, the number of chains having no NN co
tacts,Cn,0 ~‘‘neighbor-avoiding walks’’!, scales as@18,25#

Cn,0;@m~NAW!#nngNAW21, n→`, ~2.2b!

wherem~NAW! is the NAW connectivity constant, and a
guments have been given thatgNAW equalsg in Eq. ~1.1!
@18#. @There is a constant of proportionality in Eqs.~1.1! and
~2.2b! which is neglected in the present paper; see Ref.@5#
for numerical and 1/d expansion evaluations of this consta
as a function ofd.#. Numerical estimates form~NAW! for
hypercubic lattices were summarized by Nemirovskyet al.
@5~a!# and Douglas and Ishinabe@6#, where it was found tha
m~NAW!,m~SAW! for 1,d,`. Formal 1/d expansion cal-
culations@27~c!# to leading order inx indicate that the en-
tropy is at a maximum for SAW’s, and we conjecture th
this result is exact for 1,d,`. This conjecture is consisten
with the strict inequality betweenm~NAW! and m~SAW!
mentioned above.

Next, we consider the opposite extreme, where the
interactions are very attractive~F→`!, so that Eq.~2.1!
again reduces to a single term,

Qn~x→`!;Cn,mmax
xmmax. ~2.3!

The number of compact walksCn,mmax
has a finite entropy on

a hypercubic lattice, andCn,mmax
scales as@6,8,26,27#,
g
-

-

-

e

l
n

t

N

Cn,mmax
;@m~Ham!#n, n→`, ~2.4!

wherem~Ham! is the ‘‘Hamilton walk’’ connectivity con-
stant. Because of the small fluctuations of such comp
SAW’s, the 1/d expansion @27~b!# and even mean-field
theory @27~a!# ~the leading order term of the 1/d expansion!
provide good approximations ofm~Ham! @6,26#. The correc-
tions to scaling forCn,mmax

are not presently known for col
lapsed chains, but a correction of the form exp~2d*n(d21)/d!
has been suggested@28# whered* is a constant related to th
surface free energy of the compact SAW. The value ofg is
also uncertain for collapsed chains, butg values for Hamil-
ton walks arising in concentrated bulk polymer systems w
calculated by Duplantier and co-workers@29# for d52.
Questions remain regarding the universality of theg expo-
nent for isolated collapsed SAW’s@28#.

The present investigation ofCn,m is partly motivated by
an observation of Fisher and Hiley@8~c!# about the energetic
dependence of the average number of SAW contacts^m&.
They note the intriguing relation between these quantitie

^m&/n5@Cn,1 /~nCn,0!#x1O~x2!. ~2.5!

The constancy of the ratioCn,1/(nCn,0) for n→` implies
thatCn,1 scales likeCn,0 in Eq. ~2.2b!, but theg exponent for
m51 is larger,

Cn,1;@m~NAW!#nng~m51!21, n→`, ~2.6a!

g~m51!5g~m50!11. ~2.6b!

A numerical examination of the ratioCn,1/(nCn,0) shows
that it converges rather rapidly to its fixed point value f
largen, and a tabulation of the limiting value of this ratio fo
variousd is given by Douglas and Ishinabe@6#.

From the discussion above it seems natural to consider
asymptotic variation of theCn,m coefficients according to the
assumed relation

Cn,m;@m~m!#nng~m!21, n→`, ~2.6c!

which generalizes cases considered previously. An exam
tion of this scaling is more difficult with increasingm be-
cause of the slower increase ofCn,m for more compact SAW
configurations~m large!. We must then resort to a MC ca
culation, since a direct enumeration of the conta
constrained SAW configurations become computationa
prohibitive for largem @this difficulty can be appreciated b
observing thatC50 is on the orderO~1034!#. Once we gener-
ate theCn,m data, we directly apply the ratio method to ca
culatem(m) andg(m) based on Eq.~2.6c!.

Cn,m values are generated using the Rosenbluth
Rosenbluth~RR! method@19#, which has been extensivel
utilized in previous calculations of interacting SAW prope
ties @10~a!#. Eachi th chain generated by the RR procedure
given the weightWn(m,i ) which is the ratio of the weight of
the RR walk with excluded volume to a random walk~see
below!. According to the RR method, the weightWn(m,i ) is
given by

Wn~m,i !5 (
r50

2d22

@2d212r #/~2d21!] n, ~2.7a!
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740 55DOUGLAS, GUTTMAN, MAH, AND ISHINABE
wherenr ,i is the number of segments in thei th, chain, withr
contacts. For each chain the total number of NN contactm
is obtained from the relation

m5 (
r50

2d22

rnr ,i . ~2.7b!

The weightWn(m,i ) is naturally determined by the RR
method@10~a!,19#, which is its attraction for the present ca
culations. In an ensemble ofNt total generated chains, th
weights of all walks of a fixedm are summed and multiplied
by the random walk partition function@30#

Cn,m~RR!5QNRRW(
i51

Nt

Wn~m,i !/Nt , ~2.7c!

QNRRW52d~2d21!n21, ~2.7d!

whereQNRRW is the partition function of a nonreversing ra
dom walk.

Monte Carlo estimates of theCn,m for n values in the
range 1 to 50 and ford53 and 2~cubic and square lattice
respectively! were calculated and these results are availa
through the AIP Physics Auxiliary Publication Service@45#.
Exact enumeration data@5~c!,11,31# provide an important
and independent check of the accuracy of the Monte C
data in these tabulations, and these tests led us to im
restrictions on then values to the limited range indicated
achieve acceptable numerical accuracy. Table I provide
representative comparison between some exact enumer
data and MC data forCn,m having the largest values ofn
available.~Recently, we generatedCn,m data ind53 and 2
up ton518 and 26, respectively, for the purposes of che
ing our MC data in nontrivial cases.! The comparison show
that errors are largest for the most compact SAW’s and
the relatively extended NAW’s and that the sampling err
are generally larger ind52. Errors for the total number o
SAW’s were small for arbitraryn, and further tests of thes
data are made below between our results and nume
SAW results obtained by more refined data analyses.
Monte CarloCn,m data were created through the generat
of 5 000 000 million and 7.5 000 000 sample chain config
rations in d53 and 2, respectively, using a Convex 38
computer. Each of these runs took about 5 h.

The standard ‘‘ratio method’’ for determiningm andg is
based on the assumed scaling in Eq.~1.1! for SAW’s, and for
generalm we assume Eq.~2.6c! and consider the ratio
Cn,m/Cn21,m versus 1/n as for unrestricted walks@20#. Plots
of this ratio for our MC data are shown in Figs. 1 and 2 f
d53 and 2, respectively. We observe that the extrapolati
have nearly the same intercept for eachm, and we average
these intercepts to estimate the NAW connectivity consta
m~NAW;d53!54.028 andm~NAW;d52!52.315~See Refs.
@5#, @6# for a summary ofm~NAW! data as a function ofd, as
obtained from direct enumeration data.! The g(m) expo-
nents, determined by a simple least squares fit to the r
data in Figs. 1 and 2, are shown in Figs. 3 and 4. Solid li
in these figures show best fits to an assumed linear de
dence ofg(m), while the dashed line indicates the antic
pated result
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g~m!5g~m50!1m, ~2.8!

where we takeg~m50!5gSAW. The least-square fit slope
are 0.93 and 0.92 ind53 and 2, respectively, which accor
well with Eq. ~2.8!. Motivation for the linear variation ofg
with m is discussed below in comparison with other latti
models of interacting polymers, where similar scaling h
been found theoretically and numerically.

The results forCn,m scaling are contrasted with those fo
the total number of SAW configurations,

Cn5 (
m50

mmax

Cn,m . ~2.9!

Again we apply the ratio test to our MC data, where 1,n
,50, and an additional set of data~filled circles! for 1,n
,100 is also included in our examination of theCn scaling,
so that we can obtain precise critical parameter estima
We utilized the ratio method for theCn andCn,m data, be-
cause it exhibits a ‘‘scattering’’ when statistical fluctuatio
are a problem, thus providing an additional test of the qua
of our numerical data. Extrapolation of theleast-square fitto
the lattice data ford53 in Fig. 5 gives g'1.160 and
m~SAW!'4.684, which agree well with previous, more s
phisticated, exponent estimates@32#. Similar consistency is
found for thed52 SAW data. These results confirm the a
curacy of our MC calculations and our extrapolation me
ods, and serve to emphasize the change in the connect
constantm in restricted SAW’s from the value for unre
stricted SAW’s. Evidently, this change inm reflects a genera
feature of the asymptotic variation ofCn,m andmmax but the
mathematical origin of thism change is not fully understood
~see below!. It should also be appreciated that the maximu
number of SAW contacts exhibits a nontrivial dependen
on the chain lengthn. Some exactmmax results ford52 and
3 are shown in Fig. 6, and tight bounds onmmax are dis-
cussed by Douglas and Ishinabe@6#.

We next examine the scaling of the number of Hamilt
walksCHam corresponding to the maximum number of N
contacts,

CHam[Cn,mmax
. ~2.10!

Determination of the connectivity constant for Hamilto
walks is complicated by the possibility of other correctio
to scaling than the usualg exponent, as discussed above.
light of Eq. ~2.4!, we simply take thenth root of CHam to
estimatem~Ham!, and look for convergence to the long cha
limit. The result of this procedure ford53 and 2 is shown in
Figs. 7 and 8. Some oscillations are observed abou
roughly constant value about which the oscillations appea
be slowly damped. Leading order 1/d expansion estimates o
m~Ham! ~denoted as ‘‘mean field’’! are indicated for com-
parison in these figures. The average values ofm~Ham! indi-
cated from the MC data equalsm~Ham,d53!'2.19 and
m~Ham,d52!'1.57, which is compared to the second ord
1/d expansion estimates@6,27~b!# m~Ham,d53!'2.22 and
m~Ham,d52!'1.53. Our numerical estimates should be co
sidered tentative, since an accurate extrapolation require
understanding of the type of corrections to scaling exhibi
by CHam. We examine this question briefly in Fig. 9, whe
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TABLE I. Comparison of exact enumeration and Monte Carlo data ofCn,m .

Cn,m in three dimensions forn518
m Exact Monte Carlo % Error

0 211 059 485 310 211 032 540 457.32 20.01
1 413 331 190 896 413 561 837 332.88 0.06
2 468 396 156 360 467 884 259 905.73 20.11
3 410 931 236 976 410 742 912 946.66 20.05
4 302 001 979 368 302 073 496 791.33 0.02
5 195 614 670 720 195 338 712 193.01 20.14
6 115 369 171 224 115 523 265 039.12 0.13
7 63 197 862 432 63 276 679 447.572 0.12
8 32 132 589 576 32 188 795 766.744 0.17
9 15 332 612 976 15 349 712 406.028 0.11
10 6 591 974 304 6 578 745 537.143 1 20.20
11 2 596 321 248 2 586 337 473.142 8 20.38
12 849 705 360 854 831 641.535 71 0.60
13 257 779 872 255 771 866.580 36 20.78
14 46 269 648 45 603 177.392 857 21.44
15 11 185 152 10 587 390.357 143 25.34
16 492 672 630 195.1 27.91

C18 ~d53! 2 237 720 684 094 2 237 304 719 567.6 0.000 18

Cn,m in two dimensions forn526
m Exact Monte Carlo % Error

0 11 284 095 921 11 142 571 461.556 1.25
1 31 911 750 887 31 938 638 276.124 20.08
2 51 003 659 069 51 025 459 467.918 20.04
3 58 695 622 132 58 495 084 120.683 0.34
4 54 777 840 664 54 805 994 496.214 20.05
5 43 910 631 128 43 911 801 631.031 0.00
6 31 307 514 535 31 374 080 727.054 20.21
7 20 184 660 662 20 213 944 137.053 20.15
8 11 896 662 099 11 931 738 191.524 20.29
9 6 517 681 484 6 506 520 160.5201 0.17
10 3 278 616 327 3 286 714 863.0416 20.25
11 1 535 090 131 1 535 894 702.5736 20.05
12 662 785 715 659 321 911.42501 0.52
13 256 653 464 257 361 436.57 243 20.28
14 89 028 548 89 192 448.243 775 20.18
15 27 288 380 27 332 352.281 892 20.16
16 5 184 278 5 154 568.7 959 853 0.57
17 276 902 266 631.63 169 372 3.71

C26 ~d52! 327 345 042 326 327 207 071 584.24 0.000 42
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we show MC data for the ratioCHam/„m~Ham!…n, where the
estimated average value ofm~Ham! from Fig. 7 is utilized.
These results ford53 seem compatible with a surface fre
energy exp@2d*n(d21)/d# correction whered*520.94. Fur-
ther numerical data are needed to verify this possibility. G
don, Kapadia, and Malarus@26~a!# presented exact example
of Hamilton walks ind52 with fixed boundary geometries
where mHam51 ~i.e., zero entropy!, and the number of
Hamilton walk configurations scale like exp~d8n0.5!, where
d8 is a constant. This example illustrates the strong influe
of boundary conditions on compact walk properties.
exp~n0.5! scaling is also found for spiral SAW’s ind52,
which perhaps has some relation to the Hamilton walk pr
lem @33#.
r-

e

-

Another complication of themHam estimates is that the
MC sampling efficiency for Hamilton walk configuration
becomes increasingly poor for longer chains so the result
Figs. 7–9 should be viewed as only qualitative. This is p
haps the most significant limitation of our numerical calc
lations.

We also note that the existence of the different scaling
CHam does not violate the scaling ofCn,m assumed in Eq.
~2.7!, sincemmax is not fixed~see Fig. 6!. For largen the
maximum number of contacts approaches a linear dep
dence onn @5,6,8#,

mmax;~d21!n1O~n~d21!/d!, n→` ~2.11!
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742 55DOUGLAS, GUTTMAN, MAH, AND ISHINABE
for a hypercubic lattice~see Fig. 6!. This limiting behavior is
approached rather slowly, however@6#.

The average number of SAW contacts,̂m&SAW
5^m~F50!&, was extensively investigated in Ref.@6# by di-
rect enumeration.̂m&SAW is calculated as a average ov
Cn,m ,

^m&SAW5S (
m50

mmax

mCn,mD Y Cn ~2.12!

and this average for our MC data is shown in Fig. 10. T
approach of̂ m&SAW to its linear scaling behavior withn is
rapid for this quantity, as noted in our previous direct en
meration study@6#. The slope 0.193 indicated in Fig. 10
obtained by a simple least-square linear fit, and diff

FIG. 1. Ratio extrapolation of contact constrained SAW’s
d53. The NAW connectivity constantm~NAW! is estimated as the
average of the intercepts, andg(m) is determined from the slope o
the these extrapolations.

FIG. 2. Ratio extrapolation of contact constrained SAW’s
d52. The NAW connectivity constantm~NAW! is estimated as the
average of the intercepts, andg(m) is determined from the slope o
the these extrapolations.
e

-

s

slightly from value given in Ref.@6#, where corrections to
scaling were included in the extrapolation.

The limits Eqs.~2.11! and ~2.3! imply the exact depen-
dence ofm(x) for the ~hypercubic lattice! Hamilton walk
limit, m~x→`!;m~Ham!xd21, which determines the free en
ergy, internal energy, and entropy of a collapsed chain in
infinite chain limit by standard thermodynamic relatio
@5,8#.

Figure 11 shows the average number of contacts^m& as a
function of the NN interaction parameterx5exp~F!, based
on our Monte Carlo data. The crossover from the NAW lim
~x→01! to the collapsed limit~x→`! is exhibited. Notably,
the number of contacts per link is very sensitive to the int
action energy in the ‘‘collapsed’’ region for finite chains. A
estimate of the location of theu point is readily obtained

FIG. 3. Exponent spectrumg(m) for contact-constrained
SAW’s in d53. See Fig. 1.

FIG. 4. Exponent spectrumg(m) for contact-constrained
SAW’s in d52. See Fig. 2.
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55 743SPECTRUM OF SELF-AVOIDING WALK EXPONENTS
from the variance of the chain contacts shown in Fig.
~^m& is proportional to the internal energy and the variance
proportional to the specific heat.! The maxima in this figure
correspond to the ‘‘collapse transition’’ point for these fin
chains, and theu point is obtained by extrapolation of thi
maximum ton→`.

We mention another value ofm which is important for
characterizingCn,m . In Fig. 13 we indicate the contact num
berM for whichCn,m is at a maximum for all values ofm in
the range~0,mmax!. M increases in a curious stepwise fas
ion, and apparently approaches a linear asymptotic de
dence for largen.

The amplitude in Eq.~2.7! also varies with the number o
chain contactsm. To examine this quantity, we take the rat
A(m,n)[Cn,m/Cn,0n

m as a function ofm in Figs. 14~a! and
14~b! for d53 and 2.~Note the absolute error in the MC da
for this ratio is much smaller for largen than forCn,m be-
cause of the large value ofCn,0.! TheA(m,n) ratio becomes
nearly independent of chain length forn large [A(m,n→`)
'A(m)], and decreases monotonically and rapidly with
creasingm. We can obtain some insight into this variation b
inserting the definition ofA(m,n) into Eq. ~2.1!,

Qn~x!5Cn,0(
m50

mmax

A~m,n!~nx!m. ~2.13!

Since the connectivity constantsm~NAW! andm~SAW! rig-
orously exist@2,25#, we can require that Eq.~2.13! reduce to
Eq. ~1.1! for the SAW limit x51, n→`,

Qn~x51!;@m~NAW!#nng~m50!21 (
m50

mmax

A~m!nm

Qn~x51!;@m~SAW!#nng21. ~2.14!

FIG. 5. Ratio extrapolation of unrestricted SAW’s ind53. The
SAW connectivity constant is obtained from the intercept, a
g~SAW! is determined from the slope. The line was obtain
through a least-squares fit to the lattice data. Unfilled circles in
cate MC data forn<50, while the filled circles show the results o
a separate calculation with a largern range,n<100.
.
s

-
n-

-

The expected relationg~m50!5g then implies a strong con
straint on the amplitudeA(m). Equality in these asymptotic
relations in then→` limit implies

A~m!5dm/m!, d5 ln@m~SAW!/m~NAW!#,
~2.15a!

where d is the entropy difference between SAW’s an
NAW’s. Equation~2.15! then reduces to the asymptotic r
lation for contact constrained SAW’s,

Cn,m;@m~NAW!#ndmng~m!21/m!, n→`,
~2.15b!

whereg(m) is given by Eq.~2.8!. The probability of a chain
havingm contacts,P(m)[Cn,m/Cn , asymptotically then be-
comes a Poisson distribution

P~m!;exp~2dn!~dn!m/m!, n→`. ~2.15c!

d

i-
FIG. 6. Estimate of the maximum number of chain conta

mmax as described in Ref.@6#. The upper and lower curves corre
spond tod53 and 2, respectively. Monte Carlo ind52 agrees with
this figure forn in the interval~1, 50!, except for a couple ofn
values where the simulation value is lower by one unit due to
adequate sampling of the most compact SAW configurations
d53 the Monte Carlo estimates ofmmax begin to deviate substan
tially ~greater than four units! from themmax curve for n'40. It
should be mentioned that thed53 curve shown is actually a tigh
upper bound~accuracy to within one unit for the range shown! of
the number of contacts of a compact spiral SAW. Thed52 curve is
an exact expression for the number of compact spiral SAW c
tacts. Since a compact spiral SAW~see Ref.@6#! is a representative
compact SAW configuration, its number of contacts is alower
boundon the number of contacts of ‘‘collapsed’’ chains. In Ref.@6#
we suggest thatmmax actually equals the number of compact spir
SAW contacts, and numerical data support this conjecture.
simulation values ofmmax provide a good qualitative measure o
how well compact chain configurations are being sampled.
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In Eq. ~2.15c! we again adopted the expected~but unproven!
relation between NAW and SAW susceptibility exponen
g~m50!5g. Note also that the exp~2dn! term arises from
the change in the NAW and SAW connectivity constants
Eqs.~1.1! and ~2.15b!.

The asymptotic expression for the amplitude factorA(m)
in Eq. ~2.15a! is compared with our MC data in Fig. 14
where we take@5,6; see Figs. 1, 2, 5#

m~NAW;d53!54.065, m~NAW;d52!52.316,
~2.16a!

FIG. 7. Rough estimate of Hamilton walk connectivity consta
in d53. Estimate is obtained by simply averaging the oscillations
described in the text.

FIG. 8. Rough estimate of Hamilton walk connectivity consta
m~Ham! in d52. An estimate is obtained by simply averaging t
oscillations as described in the text.
,

m~SAW;d53!54.684, m~SAW;d52!52.638,
~2.16b!

so thatd is estimated as

d~d53!50.1301, d~d52!50.1417. ~2.17!

Qualitative agreement between Eq.~2.15a! and MC data for
A(m,n) is obtained without free parameters, and the fit b
comes very good ifd is phenomenologically adjusted to a
count for finite-size effects on the connectivity constants~see
Fig. 14!.

The existence of the connectivity constantsm~NAW! and
m~SAW!, and the expected exponent equalityg~m50!5g
provides important constraints onCn,m , and there are addi
tional constraints of this kind which should be useful in r
fining our knowledge ofCn,m . For example, the property
thatCn,m is positive requires that the zeros of the partiti
functionQn @12#,

Qn~x!5 (
m50

mmax

Cn,mx
m5Cn~x50!)

i51

n

~12x/xi !,

~2.18!

lie off the real axis for finite chains, and the existence of t
u point and the collapse transition imply that the zero hav
the smallest magnitude imaginary component approaches
real axis asn→` @12#. The location where the zeros interse
the positive real axis determines the critical energyFc defin-
ing theu point. Figure 15 shows the zeros obtained from o
MC data for some selected values of chain lengthn which
illustrates this ‘‘zero-pinching’’ effect. A crude extrapolatio
of the zeros having the smallest magnitude imaginary co
ponent for a givenn gives a theta point estimate similar t
the location of the specific heat maximum in Fig. 12. Unfo
tunately, the uncertainty of the MC estimates ofCn,m for
largem makes the accuracy of theu-point estimation by this
method rather unreliable, and we refrain from making a p
cise estimate here.

t
s

t

FIG. 9. Check for surface free energy corrections to scaling.
the text for discussion.
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The main point for the present discussion is that the str
ture of the zeros contains much information about the crit
behavior of interacting SAW’s, and the interesting quest
arises of how this information is related toCn,m and the
maximum contact numbermmax. It is well known in the
mathematically related Ising model that the transition te
perature is likewise determined by the thermal~Fisher! zeros
pinching the real axis, and the exponentn is determined by
the rate of approach of the zero closest to the real axis@34#.
Important amplitude ratios are determined by the angle
which the zeros intersect the real axis@34#, and no doubt
more analytical information is contained in the structure
the Fisher zeros. It is difficult to understand how this sub
information can be compatible with the simple relation E
~2.15b!. Perhaps corrections to the asymptotic scaling in
~2.15b! play an important role in determining these critic
parameters. It should be interesting to examine these q
tions in reverse where the implications of the critical scal

FIG. 10. Average number of contacts for unrestricted SAW
~a! d53. ~b! d52. Slopes indicate simple least-squares fit to latt
data without account of corrections to scaling. See Ref.@6#.
c-
l
n

-

at

f
e
.
.

s-

of the partition function forCn,m are investigated. We plan to
study this type of question further once we obtain more
curate lattice data for longer chains.

III. DISCUSSION

The main result of the present paper is the suggestion
spectrum ofg exponents corresponding to SAW’s having
constrained number of nearest-neighbor~NN! contactsm.
These numerical results must be verified by rigorous ca
lation before they can be accepted as established, howe
Some insight into the conjecturedg(m) exponents can be
obtained through physical reasoning and comparison w
results known for other constrained polymer problems.

As the temperature is lowered below theu point, the NN
interaction energy becomes stronger, and it becomes na
to think of the NN contact as being a ‘‘virtual bond.’’ In thi

. FIG. 11. Average number of SAW contacts as a function
nearest-neighbor energy. Note the sensitivity of average contac
energy in the collapsed regime for finite chains.~a! d53. ~b! d52.
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physical view, them-contacting polymers become much lik
branched polymers. Indeed, a number of authors hav
pointed out the similarity of self-attracting polymers
branched polymers based on other reasoning@35#.

Soteros and Whittington@21# have rigorously shown tha
the number of self-avoiding branched polymers~‘‘lattice ani-
mals’’ or simply ‘‘animals’’! Cn,c having a fixed cycle num-
ber c ~‘‘cyclomatic index’’! scales like

Cn,c~animal!;@m~animal!#nng~c!21, n→` ~3.1a!

g5g~c50!1c. ~3.1b!

The cyclomatic indexc is the maximum number of the edge
which can be removed from a lattice animal without brea
ing the graph up~roughly speaking the number of ‘‘loops’’!
into disjoint parts. For the SAW the NN contacts are likew

FIG. 12. Specific heat of NN-interacting SAW’s.~a! d53. ~b!
d52.
-

‘‘bonds’’ which can be cut without disconnecting the pol
mer. We also note that the maximumc of a lattice animal has
the asymptotic variation@36#,

cmax;~d21!n, n→` ~3.2!

for a hypercubic lattice. The maximum number of SAW co
tacts notably exhibits thesameasymptotic scaling@see Eq.
~2.11!#. Following the analogy further, we note that an unr
stricted sum of the number of lattice animalsCn ~animal!,

Cn~animal!5 (
c50

cmax

Cn,c ~3.3!

exhibits an asymptotic scaling

Cn~animal!;@m~animal!#nng21, n→`, ~3.4!

where it has rigorously been shown@37# that

FIG. 13. Contact numberM for which the number of SAW
configurations is greatest.~a! d53. ~b! d52.
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g5g~c50!. ~3.5!

Exact formal results forg~animal! are available ind53
and 4 through the connection between branched polym
and the Yang-Lee edge singularity problem@38#. @Often the
exponentg~animal!21 is denoted as2u in the literature on
branched polymers, and the present notation is introduce
stress the analogy between SAW’s and branched polym#

The connectivity constants for ‘‘treelike’’ lattice anima
~c50!, m0~animal!, and unrestricted lattice animals,m~ani-
mal!, wherec is not fixed, have been proven to exist@39#,
and have been shown to satisfy the strict inequality@36,37#

FIG. 14. Amplitude factorA(m)[Cn,m/n
mCn,0 for contact-

constrained SAW’s.~a! d53. ~b! d52. The light solid line denotes
Eq. ~2.15a!, whered is fixed by lattice data estimates of the co
nectivity constant@see Eq.~2.17!#. The dark solid lines are obtaine
through a least-square fit of Eq.~2.15a! to the MC data, whered is
adjusted as a fit parameter. This fitting procedure led to thed esti-
mates:d~d53!50.224 andd~d52!50.164. The numerical data ar
for n520 ~s!, n530 ~h!, andn540 ~L!.
rs

to
s.

m0~animal!,m~animal!, 1,d,`, ~3.6!

andm~animal;c! equalsm0~animal! independent ofc @21~b!#.
The corresponding relations for SAW’s were discussed
Sec. II ~conjectures supported by numerical evidence a
incomplete mathematical arguments!

g5g~m50![g~NAW!, m~NAW!,m~SAW!,

m~NAW!5m~m!, ~3.7!

are compatible with the proposed ‘‘analogy’’ between latti
animals and SAW’S. Moreover, the radius of gyration exp
nent n is believed to be the same for NAW’s and SAW’
and to bem independent~fixedm!, and similarly the lattice
animal exponentn has been shown to be independent ofc
~fixed c! for lattice animals@37~c!#. Finally, we mention the
generalization of Eq.~3.3!, where a branching fugacity

FIG. 15. Zeros of SAW partition function in the complex plan
~a! d53. ~b! d52.
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y5exp~2m! replaces the NN interaction parameterx in the
SAW partition function, Eq.~2.1! @40,41#,

Cn~animal,y![Cn~y!5 (
c50

cmax

Cn,cy
c. ~3.8!

An increase in the number of branched polymer cyc
throughy leads to a phase transition@40# for a critical value
of y5yc , where the critical exponents become alter
Again the analogy with interacting SAW’s is striking.

There have apparently been no studies of the amplitud
Cn,c for lattice animals, despite the more developed rigoro
theory for animals in comparison with interacting SAW’
Equation~2.15a! suggests ac-dependent prefactorA(c),

A~c!;@d~animal!#c/c!, n→`, ~3.9a!

d~animal!5ln@m~animal!/m0~animal!#. ~3.9b!

We mention numerical estimates ofm~animal! and
m0~animal! for square and cubic lattices@37~a!,37~b!#,

m~animal,d53!510.62, m0~animal,d53!510.53,
~3.10a!

m~animal,d52!55.210, m0~animal,d52!55.14.
~3.10b!

A rigorous derivation of the dependence of the lattice anim
amplitudeA(c) on c would be interesting. In the meantim
it should be useful to check Eq.~3.9! numerically.

Data relating to the amplitudeA(c) have recently been
given for the closely related problem of self-avoiding ra
dom plaquettes surfaces@22–24#. Strong arguments hav
been given that these surfaces belong to the lattice an
universality class@41#, and these arguments are well su
ported by numerical studies@41,42#. For random surfaces th
genus plays a role similar to the number of loops~cyclomatic
index! of branched polymers@22#, and we would then expec
that the number of random surfaces with fixed genus,Qn,g to
scale as

Qn,g;ng~g!21@m0~surface!#
n, n→`, ~3.11a!

g~g!5g~g50!1g, ~3.11b!

wheren is the number of surface plaquettes andm0~surface!
is the surface connectivity constant for a fixed genus. D
senkoet al. @23# suggested a relation of this kind wheren is
replaced by the surface areaA for self-avoiding random
plaquette surfaces arising in their investigation into clus
ing in the Ising model~d53!. They also suggest that thi
,

s

.

of
s

l

-

al
-

t-

r-

scaling relation~or a very similar form! obtains for a wide
range of random surface models. Dotsenkoet al. estimated
the genus-dependent amplitude numerically and argued
the probabilityP(g) of a random surface having a genusg
equals@see Eq.~2.15!#,

P~g!;exp~2dA!~dA!g/g!, ~3.12!

whereA is proportional to the surface mass (n). The data for
various random surface models show that the slope ofg(g)
versusg is near 1 as in Figs. 3 and 4 for contact-constrain
SAW’s. It is not clear whether the small deviations from
unit slope in both these models reflect real deviations
numerical uncertainty@22#. Very similar numerical results
and conclusions for random plaquette surfaces have b
found by Caselle and co-workers@24#.

The physical arguments for the distributionP(g) of the
number of self-avoiding surface configurations given by D
senkoet al. and Caselle and co-workers also provide a m
tivation for the SAW contact distribution function Eq
~2.15a!, where the genus of the random surface is repla
by the SAW contact numberm. These physical argument
complement the deduction of Eq.~2.15c! in Sec. III, based
on analytical self-consistency.

Finally, we mention that other aspects of the relation b
tween the SAW contact numberm and the genus numberg
carry over as in the discussion betweenm and the cyclomatic
index c. The connectivity constant is different for surfac
with an unconstrained genus number from those with a fi
genus@22,43#, the linear exponent spectrumg(s) @23,24#, the
transition for a critical fugacity@44#, etc., are common fea
tures of these problems.

In summary, the scaling of the number of SAW’s havin
a fixed number of contactsm, the number of branched poly
mers with a fixed cyclomatic indexc and the number of
random surfaces having a fixed genusg exhibit similar scal-
ing behavior with polymer massn. This suggests that man
results, which are known properties for SAW’s, should ho
for those more complex polymer structures and some in
esting properties of contact-constrained SAWs such a
spectrum of contactg(m) exponents. These analogies al
work in reverse, and interesting results are also implied
SAWs.
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