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Spectrum of self-avoiding walk exponents
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A short range interaction is incorporated into the self-avoiding W8WKW) model of polymer chains by
partitioning SAW’s into equivalence classes of chain configurations havimgarest-neighbor contacts, and
performing an energetically weighted averaging over these restricted SAW configurations. Surprisingly, there
have been limited studies of the geometrical properties of “contact-constrained” SAW configurations, which
contrasts with the well studied unrestricted SAW’s. Accordingly, we generate Monte Carlo data for the total
number of SAW configuration§,, , having a fixed number of contaats for chains of lengtin on square and
cubic lattices. Applications of the standard ratio method toQhg, data shows aniqueconnectivity constant
n (NAW), corresponding to neighbor-avoiding walke=0), and a “spectrum” ofy exponents which depend
on the contact numben. The asymptotic scaling of the number of contact-constrained SAW's is found to be
similar to the number of lattice animals and random plaquette surfaces having a fixed cyclomatic ardex
genusg, respectively. The existence of this common structure is promising for the development of an analytic
theory of interacting polymers and surfacE81063-651X%97)10101-5

PACS numbds): 05.50+q, 05.70.Fh

[. INTRODUCTION gyration exponent are also contained in this SAW data, and
these quantities have been estimated by a variety of methods
There have been numerous studies of the properties ¢f1,13-117.
self-avoiding walks(SAW'’s), and many of their properties Surprisingly, there have been few studies of SAW's hav-
have become established, at least numerically. For exampli#g a fixed number of contacts, except for then=0 case
an extensive body of theory and numerical data indicates thatorresponding to “neighbor-avoiding walk{'18], and usu-
the total number of SAW configuratior®, of lattice walks  ally these types of data are averaged to determine other in-
of lengthn scales asymptotically 44—6] formation about polymers with nearest-neighldiN) inter-
actions (critical exponents, connectivity constant, internal
energy, specific heat, e1d6,8,10,1]. Contact-constrained
Co~[u(SAW)]"n?" 1, noo, (1.)  SAW data are often not even reported.
It seems clear that if we can understand the asymptotic
variation of the contact-constrained SAW properties, then
where u(SAW) is the SAW “connectivity constant,” angs  this should open the way to further analytical progress on
is the SAW “susceptibility” exponent. Rigorous results in- describing interacting SAW’s and other closely related lat-
clude a proof of the existence @f(SAW) [1], 1/d expan- tice models. Accordingly, we generate accurate numerical
sions of w(SAW) [2], and a proof thaty=1 for high dimen-  data for the total number of SAW configuratio@s ., having
sionalities,d=5 [3]. Moreover, formal conformal invariance @ fixed number of contactsn by Monte Carlo(Rosenbluth
calculations indicate/=43/32 in the non-trivial case af=2  and Rosenblutfi19]) methods, and analyze these data using
[7], and it is evident that=1 for d=1. Numerical data for the ratio method as for unrestricted SAW dgta,2q.
w(SAW) and y as a function ofd for hypercubic lattices A similar scaling for theC,, ., data to Eq(1.1) is found in
have recently been summarizgt-6]. our data analysis, except that the connectivity constant cor-
The theoretical treatment of interacting polymers requiregesponds to neighbor-avoiding walkgNAW) [5,18] for all
further information about the properties of SAW'’s, however.m, andy is found to depend on the contact numberThis
A short-range interaction is incorporated into the SAWnontrivial scaling of the contact-constrained SAW's is simi-
model of polymer chains by partitioning SAW configurations lar to the asymptotic scaling for the number of lattice ani-
into equivalence classes corresponding to a fixed number mals and random plaquette surfaces having a fixed cylomatic
of nearest-neighbor contacf8]. Chain properties are then indexc and genugy, respectively{21-24, and the connec-
calculated by performing an energetically weighted averagtion between these problems is considered in Sec. IIl.
ing of these constrained SAW configuratidis8]. This re-
stricted SAW data contain important information such as the
location of the 6-temperature, where attractive interactions
begin to predominate over repulsive polymer-polymer inter-  Although SAW'’s have no self-intersections by definition,
actions[9—12]. The #-point y exponent and the radius of the there can be NN contacts corresponding to adjacent vertices
of the SAW path which are not connected by a bond of the
chain path. An energetic interaction is incorporated into the
* Author to whom correspondence should be addressed. SAW model by associating a Boltzmann weight with these
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contacts. Thus we arrive at the general problem of sorting Com.  ~[m(Ham]", n—oo, (2.9
SAW configurations into equivalence classes having a com- o
mon contact numbemn, and of counting the number of these where u(Ham) is the “Hamilton walk” connectivity con-
contact-constrained SAW configurations by direct enumerastant. Because of the small fluctuations of such compact
tion or Monte Carlo(MC) sampling. SAW’s, the 18 expansion[27(b)] and even mean-field

In previous papers the exact SAW partition function for theory[27(a)] (the leading order term of the dexpansioh
interacting chains up to a chain lengtk-11 ind dimensions  provide good approximations @f(Ham) [6,26]. The correc-
[5] was calculated, and the partition functi@y of the NN- tions to scaling forC,, , _are not presently known for col-
interacting SAW is obtained in the form of a polynomial lapsed chains, but a correction of the form exp*n(d-1)/d)

[5.8], has been suggestga8] wheres* is a constant related to the
m surface free energy of the compact SAW. The valuey id
o~ m also uncertain for collapsed chains, buvalues for Hamil-
Q”(X)_mzo CrmX™,  X=exp(®), 2.0 ton walks arising in concentrated bulk polymer systems were

calculated by Duplantier and co-workefg9] for d=2.
whered is the dimensionless NN interaction energy describ-Questions remain regarding the universality of thexpo-
ing the polymer self-interactiotPositive values correspond Nent for isolated collapsed SAW[28]. _
to attractive interactions, while negative values to repulsive The present investigation &, , is partly motivated by
ones). C,, . the number of SAW's of length having ex- @n observation of Fisher and Hil¢8(c)] about the energetic
actly m contacts, are polynomials i#h, and the sum in Eq. dependence of the average number of SAW contaus
(2.1) is limited by the maximum number of NN-chain con- They note the intriguing relation between these quantities,

tactsmy,, [6]- B 2
Some special limits of Eq(2.1) have been extensively (m)/n=[Cn1/(nCy0) Jx+O(X%). 29

studied. For example, the limit of a vanishing polymer-1ne constancy of the rati€, /(nC, ¢ for n— implies

polymer interaction (x—1) corresponds to unrestricted thatC,, , scales likeC,, ,in Eqg.(2.20), but they exponent for
SAW’s, so thatQ,(x=1)=C, and the asymptotic scaling =1 js larger, ’

prescribed in Eq(1.1) must be recovered. Known results for

C, provide useful tests of our MC data below. Another well Crai~[w(NAW)]'nY™M=D=1" n_e  (2.63
studied limit corresponds to a strongly repulsive interaction
(d——), where the sum in Eq2.1) reduces to a single y(m=1)=y(m=0)+1. (2.6b

athermal term ) o )
A numerical examination of the rati€, /(nC, ;) shows

Qn(®——%)~C,p. (2.29  that it converges rather rapidly to its fixed point value for
' largen, and a tabulation of the limiting value of this ratio for

Asymptotically, the number of chains having no NN con- variousd is given by Douglas and Ishinathé].

tacts,C,, , (“neighbor-avoiding walks’), scales a$18,25 From the discussion above it seems natural to consider the
’ asymptotic variation of th€,, ,, coefficients according to the
Cro~[w(NAW)"n?Naw=1 n_soo, (2.2b assumed relation
Cn’m,-\,[,u‘(m)]nn)’(m)*ll n—>OO, (260)

where uw(NAW) is the NAW connectivity constant, and ar-
guments have been given th@{ay equalsy in Eq. (1.1 which generalizes cases considered previously. An examina-
[18]. [There is a constant of proportionality in Eq$.1) and  tjon of this scaling is more difficult with increasing be-
(2.2b which is neglected in the present paper; see R&f. cause of the slower increase®f ,, for more compact SAW

for numerical and H expansion evaluations of this constant configurations(m large). We must then resort to a MC cal-
as a function ofd.]. Numerical estimates fon(NAW) for  cylation, since a direct enumeration of the contact-
hypercubic lattices were summarized by Nemirovityal.  constrained SAW configurations become computationally
[5(a)] and Douglas and Ishinatj6], where it was found that pronibitive for largem [this difficulty can be appreciated by
m(NAW)<u(SAW) for 1<d<e. Formal 16l expansion cal-  gpserving thaCsy, is on the ordelO(10*)]. Once we gener-

culations[27(c)] to leading order inx indicate that the en- ate theC,, , data, we directly apply the ratio method to cal-
tropy is at a maximum for SAW's, and we conjecture thatcy|ate u(m) and y(m) based on Eq(2.69.

th|S I’esult iS exact for 4:d<OO Th|S Conjecture iS Consistent Cn m Va'ues are generated using the Rosenb|uth and
with the strict inequality betweem(NAW) and w(SAW)  Rosenbluth(RR) method[19], which has been extensively
mentioned above. _ utilized in previous calculations of interacting SAW proper-

~ Next, we consider the opposite extreme, where the NNjes[10(a)]. Eachith chain generated by the RR procedure is
interactions are very attractiveb—<), so that Eq.(2.1)  given the weightV,(m,i) which is the ratio of the weight of

again reduces to a single term, the RR walk with excluded volume to a random wétiee
below). According to the RR method, the weight,(m,i) is
Qn(xﬂw)wcn,mmaxxmmax- (2.3 given by

2d-2

The number of compact WaIIGn,mmaXhas a finite entropy on W (m,i)= Z [2d-1-r]/(2d-D)]", (2.78
r=0

a hypercubic lattice, an@, , _ scales a$6,8,26,21,
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wheren, ; is the number of segments in thiéa, chain, withr y(m)=y(m=0)+m, (2.8
contacts. For each chain the total number of NN contacts
is obtained from the relation where we takey(m=0)=ysaw. The least-square fit slopes

are 0.93 and 0.92 id=3 and 2, respectively, which accord
well with Eqg. (2.8). Motivation for the linear variation ofy
m= 2 Mei. (279 with m is discussed below in comparison with other lattice
=0 models of interacting polymers, where similar scaling has
been found theoretically and numerically.

The results folIC, , scaling are contrasted with those for
the total number of SAW configurations,

2d-2

The weight W,(m,i) is naturally determined by the RR
method[10(a),19], which is its attraction for the present cal-
culations. In an ensemble &, total generated chains, the

weights of all walks of a fixedn are summed and multiplied Mma
by the random walk partition functiof80] Cn:mE=0 Com- (2.9
Nt
C, m(RR)zQNRRWE W, (m,i)/N;, (2.70  Again we apply the ratio test to our MC data, whererl
' =1

<50, and an additional set of datflled circles for 1<n
<100 is also included in our examination of tBg scaling,
Qnrrw=2d(2d—1)""1, (2.70 so that we can obtain precise critical parameter estimates.
We utilized the ratio method for th€, andC,, ., data, be-
whereQprgrw iS the partition function of a nonreversing ran- cause it exhibits a “scattering” when statistical fluctuations
dom walk. are a problem, thus providing an additional test of the quality
Monte Carlo estimates of th€, ,, for n values in the of our numerical data. Extrapolation of tleast-square fito
range 1 to 50 and fod=3 and 2(cubic and square lattice, the lattice data ford=3 in Fig. 5 gives y=1.160 and
respectively were calculated and these results are availablg«(SAW)~4.684, which agree well with previous, more so-
through the AIP Physics Auxiliary Publication Servigts].  phisticated, exponent estimatg®?2]. Similar consistency is
Exact enumeration datgb(c),11,31] provide an important found for thed=2 SAW data. These results confirm the ac-
and independent check of the accuracy of the Monte Carlguracy of our MC calculations and our extrapolation meth-
data in these tabulations, and these tests led us to imposels, and serve to emphasize the change in the connectivity
restrictions on than values to the limited range indicated to constantu in restricted SAW's from the value for unre-
achieve acceptable numerical accuracy. Table | provides siricted SAW's. Evidently, this change pnreflects a general
representative comparison between some exact enumeratit@ature of the asymptotic variation @f; ,, andm,,,, but the
data and MC data fo€, ,, having the largest values of  mathematical origin of thig. change is not fully understood
available.(Recently, we generated, ,, data ind=3 and 2  (see below It should also be appreciated that the maximum
up ton=18 and 26, respectively, for the purposes of checknumber of SAW contacts exhibits a nontrivial dependence
ing our MC data in nontrivial casesThe comparison shows on the chain lengtin. Some exacin,,,, results ford=2 and
that errors are largest for the most compact SAW’s and fo8 are shown in Fig. 6, and tight bounds om,,, are dis-
the relatively extended NAW’s and that the sampling errorscussed by Douglas and Ishinaf.
are generally larger i=2. Errors for the total number of We next examine the scaling of the number of Hamilton
SAW's were small for arbitraryr, and further tests of these walks Cy,, corresponding to the maximum number of NN
data are made below between our results and numeric&bntacts,
SAW results obtained by more refined data analyses. Our
Monte CarloC,, ,, data were created through the generation Cham=Cnm,_ (2.10
of 5000 000 million and 7.5 000 000 sample chain configu-
rations ind=3 and 2, respectively, using a Convex 3820Determination of the connectivity constant for Hamilton
computer. Each of these runs took about 5 h. walks is complicated by the possibility of other corrections
The standard “ratio method” for determining andyis  to scaling than the usugl exponent, as discussed above. In
based on the assumed scaling in Bgl) for SAW’s, and for  light of Eq. (2.4), we simply take thenth root of C,,, to
generalm we assume E(q(2.69 and consider the ratio estimatew(Ham), and look for convergence to the long chain
Chnm/Cn—1m versus It as for unrestricted walkig20]. Plots  limit. The result of this procedure fat=3 and 2 is shown in
of this ratio for our MC data are shown in Figs. 1 and 2 forFigs. 7 and 8. Some oscillations are observed about a
d=3 and 2, respectively. We observe that the extrapolationsoughly constant value about which the oscillations appear to
have nearly the same intercept for eanhand we average be slowly damped. Leading orderdléxpansion estimates of
these intercepts to estimate the NAW connectivity constantsy(Ham) (denoted as “mean field’are indicated for com-
w(NAW;d=3)=4.028 andu(NAW;d=2)=2.315(See Refs. parison in these figures. The average valueg(bfam) indi-
[5], [6] for a summary ofu(NAW) data as a function af, as  cated from the MC data equalg(Hamd=3)=~2.19 and
obtained from direct enumeration datdhe y(m) expo- u(Hamgd=2)~1.57, which is compared to the second order
nents, determined by a simple least squares fit to the ratit/d expansion estimatel6,27b)] u(Hamd=3)~2.22 and
data in Figs. 1 and 2, are shown in Figs. 3 and 4. Solid linegt«(Hamd=2)~1.53. Our numerical estimates should be con-
in these figures show best fits to an assumed linear depesidered tentative, since an accurate extrapolation requires an
dence ofy(m), while the dashed line indicates the antici- understanding of the type of corrections to scaling exhibited
pated result by Cyam- We examine this question briefly in Fig. 9, where
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TABLE I. Comparison of exact enumeration and Monte Carlo dat@ pf, .
Ch.m in three dimensions fon=18
m Exact Monte Carlo % Error
0 211 059 485 310 211 032 540 457.32 —-0.01
1 413 331 190 896 413 561 837 332.88 0.06
2 468 396 156 360 467 884 259 905.73 -0.11
3 410 931 236 976 410 742 912 946.66 —0.05
4 302 001 979 368 302 073 496 791.33 0.02
5 195614 670 720 195338 712 193.01 -0.14
6 115369 171 224 115 523 265 039.12 0.13
7 63 197 862 432 63 276 679 447.572 0.12
8 32132589576 32188 795 766.744 0.17
9 15332612 976 15 349 712 406.028 0.11
10 6 591 974 304 6578 745537.143 1 —0.20
11 2596 321 248 2586 337 473.142 8 —0.38
12 849 705 360 854 831 641.53571 0.60
13 257779 872 255 771 866.580 36 —0.78
14 46 269 648 45 603 177.392 857 —1.44
15 11185 152 10587 390.357 143 —5.34
16 492 672 630 195.1 2791
Cig(d=3) 2237720 684 094 2237304719 567.6 0.000 186
Chm in two dimensions fon=26
m Exact Monte Carlo % Error
0 11 284 095 921 11 142 571 461.556 1.25
1 31911 750 887 31938638 276.124 —0.08
2 51 003 659 069 51 025 459 467.918 —0.04
3 58 695 622 132 58 495 084 120.683 0.34
4 54 777 840 664 54 805 994 496.214 —0.05
5 43910631 128 43911 801 631.031 0.00
6 31307 514 535 31374 080 727.054 -0.21
7 20 184 660 662 20 213 944 137.053 —0.15
8 11 896 662 099 11931738 191.524 —0.29
9 6 517 681 484 6 506 520 160.5201 0.17
10 3278616 327 3286 714 863.0416 —0.25
11 1535090 131 1535894 702.5736 —0.05
12 662 785 715 659 321 911.42501 0.52
13 256 653 464 257 361 436.57 243 —-0.28
14 89 028 548 89192 448.243 775 —-0.18
15 27288 380 27 332 352.281 892 —0.16
16 5184 278 5154 568.7 959 853 0.57
17 276 902 266 631.63 169 372 3.71
Cy (d=2) 327 345 042 326 327207 071 584.24 0.000 42
we show MC data for the rati€,,,/(uw(Ham))", where the Another complication of theu,,, estimates is that the

estimated average value pfHam) from Fig. 7 is utilized. =~ MC sampling efficiency for Hamilton walk configurations
These results fod =3 seem compatible with a surface free- becomes increasingly poor for longer chains so the results of
energy exp—*n{®~"] correction wheres*=—0.94. Fur-  Figs. 7-9 should be viewed as only qualitative. This is per-
ther numerical data are needed to verify this possibility. Gorhaps the most significant limitation of our numerical calcu-
don, Kapadia, and Malary26(a)] presented exact examples |ations.

of Hamilton walks ind=2 with fixed boundary geometries  \ye also note that the existence of the different scaling for
where uym=1 (i.e., zero entropy and the number of ¢ does not violate the scaling &, ,, assumed in Eq.
Hamilton walk configurations scale like ep@n®%), where (2.7), sincem,,,, is not fixed(see Fig. ’5 For largen the

¢’ is a constant. This example illustrates the strong influencenaximum number of contacts approaches a linear depen-
of boundary conditions on compact walk properties. Angence om [5,6,9,

exp(n®® scaling is also found for spiral SAW'’s id=2,
which perhaps has some relation to the Hamilton walk prob-
lem [33]. Mmax~ (d—1)n+0O(n@~V/d) " n o (2.1
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FIG. 1. Ratio extrapolation of contact constrained SAW'’s in m
d=3. The NAW connectivity constani(NAW) is estimated as the
average of the intercepts, anfim) is determined from the slope of

the these extrapolations. FIG. 3. Exponent spectrumy(m) for contact-constrained

SAW'’s in d=3. See Fig. 1.

for a hypercubic latticésee Fig. 6. This limiting behavior is  slightly from value given in Ref[6], where corrections to
approached rather slowly, howeV]. scaling were included in the extrapolation.

The average number of SAW contactgm)saw The limits Egs.(2.11) and (2.3 imply the exact depen-
=(m(®=0)), was extensively investigated in R¢6] by di-  dence ofu(x) for the (hypercubic lattice Hamilton walk
rect enumeration(m)ysay is calculated as a average over |imit, w(x—»)~u(Hamx® 1, which determines the free en-
Chmo ergy, internal energy, and entropy of a collapsed chain in the

infinite chain limit by standard thermodynamic relations

m
max [5,8].
(M) saw= ( mZ:O rncn,m) / Cn (212 Figure 11 shows the average number of contattsas a
function of the NN interaction parametgr=exp®), based

and this average for our MC data is shown in Fig. 10 Theon our Monte Carlo data. The crossover from the NAW limit

+ - ; o
approach of m)gay o its linear scaling behavior with is 81(%0 ) tt? thef colletxpsted Im;(x;oo) IS eXh'b'.tt?d‘ t,\lottr?bly't
rapid for this quantity, as noted in our previous direct enu- € humber of contacts per link IS very sensitive to the inter-

meration study{6]. The slope 0.193 indicated in Fig. 10 is act?on energy in the “g:ollapsed” fegior? for finiFe chaiqs. An
obtained by ;{ iimple Iegst-square linear fit, angd Oliffersesztlmate of the location of thé point is readily obtained

2.9 8 | T T T T T
& 2.8 _
O 27
~ L
: 26 =
=
&) .
=
2.5
24
23
0.00 0.01 0.02 0.03 0.04
1 I | | | L
1/n 0 1 2 3 4 5 6
FIG. 2. Ratio extrapolation of contact constrained SAW'’s in m

d=2. The NAW connectivity constani(NAW) is estimated as the
average of the intercepts, anfim) is determined from the slope of FIG. 4. Exponent spectrumy(m) for contact-constrained
the these extrapolations. SAW'’s in d=2. See Fig. 2.
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FIG. 5. Ratio extrapolation of unrestricted SAW’sdr=3. The 0 10 20 30 40 50
SAW connectivity constant is obtained from the intercept, and
YSAW) is determined from the slope. The line was obtained

through a least-squares fit to the lattice data. Unfilled circles indi-

n

cate MC data fon<50, while the filled circles show the results of
a separate calculation with a largerange,n<100.

from the variance of the chain contacts shown in Fig. 12

FIG. 6. Estimate of the maximum number of chain contacts
Mmax @S described in Ref6]. The upper and lower curves corre-
spond tod=3 and 2, respectively. Monte Carlo éh=2 agrees with

this figure forn in the interval(1, 50, except for a couple of

(< m> is proportional to the internal energy and the variance ig/alues where the simulation value is lower by one unit due to in-

proportional to the specific hepfThe maxima in this figure
correspond to the “collapse transition” point for these finite
chains, and the& point is obtained by extrapolation of this
maximum ton—oe,

We mention another value oh which is important for
characterizingC,, ,,. In Fig. 13 we indicate the contact num-
berM for whichC, ., is at a maximum for all values @h in
the range(0,m,5,). M increases in a curious stepwise fash-
ion, and apparently approaches a linear asymptotic depe
dence for largen.

The amplitude in Eq(2.7) also varies with the number of
chain contactsn. To examine this quantity, we take the ratio
A(m,n)=C, ,/C,on™ as a function ofm in Figs. 14a) and
14(b) for d=3 and 2.(Note the absolute error in the MC data
for this ratio is much smaller for large than forC,, ., be-
cause of the large value @f, ;,.) The A(m,n) ratio becomes
nearly independent of chain length forlarge [A(m,n— )
~A(m)], and decreases monotonically and rapidly with in-
creasingm. We can obtain some insight into this variation by
inserting the definition oA(m,n) into Eq.(2.1),

Mmax

Qn(x)= Cn,omEzo A(m,n)(nx)™. (2.13

Since the connectivity constanggNAW) and w(SAW) rig-
orously exisf2,25|, we can require that E§2.13 reduce to
Eqg. (1.2) for the SAW limitx=1, n—x,

Mmax

Qn(x=1)~[m(NAW)'n"™=071 3, A(m)n™

Qn(x=1)~[u(SAW)]"n?"*. (2.14

n

adequate sampling of the most compact SAW configurations. In
d=3 the Monte Carlo estimates afi,,o, begin to deviate substan-
tially (greater than four unijsfrom the m,,,, curve forn~40. It
should be mentioned that thie=3 curve shown is actually a tight
upper bound(accuracy to within one unit for the range shovai

the number of contacts of a compact spiral SAW. @2 curve is

an exact expression for the number of compact spiral SAW con-
tacts. Since a compact spiral SAlsee Ref[6)) is a representative
compact SAW configuration, its number of contacts iower
boundon the number of contacts of “collapsed” chains. In Réf|

we suggest tham,,,, actually equals the number of compact spiral
SAW contacts, and numerical data support this conjecture. The
simulation values ofm,,, provide a good qualitative measure of
how well compact chain configurations are being sampled.

The expected relatiop{m=0)= vy then implies a strong con-
straint on the amplitudé&(m). Equality in these asymptotic
relations in then—co limit implies
A(m)=48"m!, 5=In[ w(SAW)/u(NAW)],
(2.15a

where & is the entropy difference between SAW'’s and

NAW’s. Equation(2.15 then reduces to the asymptotic re-

lation for contact constrained SAW's,
Chrm~[#(NAW) "™ ™ ~3/ml, n—o

" (2.15H

wherey(m) is given by Eq.(2.8). The probability of a chain

havingm contactsP(m)=C, ,/C,, asymptotically then be-

comes a Poisson distribution
P(m)~exp(— on)(Sn)™/ml,

n—oo,

(2.159
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FIG. 9. Check for surface free energy corrections to scaling. See
FIG. 7. Rough estimate of Hamilton walk connectivity constantthe text for discussion.
in d=3. Estimate is obtained by simply averaging the oscillations as
described in the text. m(SAW;d=3)=4.684, u(SAW;d=2)=2.638,
(2.16b

In EqQ. (2.159 we again adopted the expect@ulit unproven
relation between NAW and SAW susceptibility exponents,
y(m=0)=7v. Note also that the exp én) term arises from
the change in the NAW and SAW connectivity constants in
Egs.(1.1) and(2.15h.

The asymptotic expression for the amplitude fag¢m)
in Eq. (2.159 is compared with our MC data in Fig. 14,
where we také5,6; see Figs. 1, 2,15

so thatéd is estimated as
8(d=3)=0.1301, §(d=2)=0.1417. (2.17

Qualitative agreement between Ef.153 and MC data for
A(m,n) is obtained without free parameters, and the fit be-
comes very good i# is phenomenologically adjusted to ac-
count for finite-size effects on the connectivity constdeéee
Fig. 14).
A A The existence of the connectivity constapi®NAW) and

#(NAW; d=3)=4.065, M(NAW’d_Z)_Z'Sl(g’ma w(SAW), and the expected exponent equaliggm=0)=1r

' provides important constraints @@, ,, and there are addi-
tional constraints of this kind which should be useful in re-
fining our knowledge ofC, ,. For example, the property

4.0 ' ' ' that C,, , is positive requires that the zeros of the partition
d=2 ) functionQ,, [12],
35 -
Mmax n
20 | Qn<x>=m2_o cn,mxm=cn<x=0>i[[1 (1=x/xy),
é_ ) Average over 26<n<50 = 1.57 (2.18
g
U: 251 lie off the real axis for finite chains, and the existence of the
= 0 point and the collapse transition imply that the zero having
20 F the smallest magnitude imaginary component approaches the
real axis a1 —ce [12]. The location where the zeros intersect
the positive real axis determines the critical enedgydefin-
L5 _\ ing the 6 point. Figure 15 shows the zeros obtained from our
Mean Field: 2d/e = 1.47 MC data for some selected values of chain lengtivhich
1.0 P S S illustrates this “zero-pinching” effect. A crude extrapolation
0 10 20 30 40 50 of the zeros having the smallest magnitude imaginary com-
ponent for a givem gives a theta point estimate similar to
n the location of the specific heat maximum in Fig. 12. Unfor-

tunately, the uncertainty of the MC estimates @©f ,, for
FIG. 8. Rough estimate of Hamilton walk connectivity constantlargem makes the accuracy of thiepoint estimation by this
w(Ham) in d=2. An estimate is obtained by simply averaging the method rather unreliable, and we refrain from making a pre-
oscillations as described in the text. cise estimate here.
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FIG. 10. Average number of contacts for unrestricted SAW'’s.
(a) d=3. (b) d=2. Slopes indicate simple least-squares fit to lattice
data without account of corrections to scaling. See Fif.

FIG. 11. Average number of SAW contacts as a function of
nearest-neighbor energy. Note the sensitivity of average contacts to
energy in the collapsed regime for finite chaif®.d=3. (b) d=2.

The main point for the present discussion is that the struc- . ) ) )
ture of the zeros contains much information about the criticaP! the partition function foC,, , are investigated. We plan to
behavior of interacting SAW’s, and the interesting questionstudy this type of question further once we obtain more ac-
arises of how this information is related @, , and the ~Curate lattice data for longer chains.
maximum contact numbem,,,. It is well known in the
mathematically related Ising model that the transition tem-
perature is likewise determined by the therr{féshe)p zeros
pinching the real axis, and the exponenis determined by The main result of the present paper is the suggestion of a
the rate of approach of the zero closest to the real @46  spectrum ofy exponents corresponding to SAW’s having a
Important amplitude ratios are determined by the angle atonstrained number of nearest-neighlfbiN) contactsm.
which the zeros intersect the real axB4|, and no doubt These numerical results must be verified by rigorous calcu-
more analytical information is contained in the structure oflation before they can be accepted as established, however.
the Fisher zeros. It is difficult to understand how this subtleSome insight into the conjecturedm) exponents can be
information can be compatible with the simple relation Eg.obtained through physical reasoning and comparison with
(2.15bh. Perhaps corrections to the asymptotic scaling in Eqresults known for other constrained polymer problems.
(2.15h play an important role in determining these critical ~ As the temperature is lowered below thgoint, the NN
parameters. It should be interesting to examine these quebiteraction energy becomes stronger, and it becomes natural
tions in reverse where the implications of the critical scalingto think of the NN contact as being a “virtual bond.” In this

Ill. DISCUSSION
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FIG. 12. Specific heat of NN-interacting SAW'&) d=3. (b) FIG. 13. Contact numbeM for which the number of SAW
d=2. configurations is greatesta) d=3. (b) d=2.

physical view, them-contacting polymers become much like “bonds™ which can be cut without disconnecting the poly-
branched polymersindeed, a number of authors have Mer. We also note that the maximunof a lattice animal has
pointed out the similarity of self-attracting polymers to the asymptotic variatiop36],

branched polymers based on other reasofigtg.

Soteros and Whittingtof21] have rigorously shown that Chax~(d—1)n, n—oo (3.2
the number of self-avoiding branched polymétisttice ani-
mals” or simply “animals™) C,, . having a fixed cycle num-
berc (“cyclomatic index™) scales like

for a hypercubic lattice. The maximum number of SAW con-
tacts notably exhibits theameasymptotic scalingsee Eq.
(2.11)]. Following the analogy further, we note that an unre-
stricted sum of the number of lattice anim&lg (anima),
Ch c(anima)~[u(anima)]"n?®-1  n-e (3.1a .
Cn(anima)= >, C, (3.3
v=1vy(c=0)+c. (3.1b c=0

o _ _ exhibits an asymptotic scaling
The cyclomatic index is the maximum number of the edges

which can be removed from a lattice animal without break- Cp(anima)~[u(anima)]"n” 1, n—w, (3.4
ing the graph ugroughly speaking the number of “loop$”
into disjoint parts. For the SAW the NN contacts are likewisewhere it has rigorously been shoy®7] that
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FIG. 14. Amplitude factorA(m)=C, /n™C,, for contact- FIG. 15. Zeros of SAW partition function in the complex plane.

constrained SAW's(a) d=3. (b) d=2. The light solid line denotes (& d=3. (b) d=2.

Eqg. (2.159, where§ is fixed by lattice data estimates of the con-

nectivity constanfsee Eq(2.17)]. The dark solid lines are obtained uo(anima)<u(anima), 1<d<eo, (3.6
through a least-square fit of E(®.153 to the MC data, wheré is
adjusted as a fit parameter. This fitting procedure led todtbeti-
mates:8(d=3)=0.224 and§(d=2)=0.164. The numerical data are
for n=20 (O), n=30 (), andn=40 ().

and u(animalg) equalsug(anima) independent o€ [21(b)].
The corresponding relations for SAW’s were discussed in
Sec. Il (conjectures supported by numerical evidence and
incomplete mathematical arguments
y=y(c=0). (3.9

Exact formal results for{(anima) are available ind=3 y=y(M=0)=y(NAW), = u(NAW)<p(SAW),
and 4 through the connection between branched polymers p(NAW)=p(m), 3.7
and the Yang-Lee edge singularity probl¢g8]. [Often the
exponenty(anima)—1 is denoted as-6 in the literature on  are compatible with the proposed “analogy” between lattice
branched polymers, and the present notation is introduced tanimals and SAW’S. Moreover, the radius of gyration expo-
stress the analogy between SAW’s and branched polyinersnent v is believed to be the same for NAW’s and SAW's,

The connectivity constants for “treelike” lattice animals and to bem independentfixed m), and similarly the lattice
(c=0), ug(anima), and unrestricted lattice animalg(ani-  animal exponent has been shown to be independentcof
mal), wherec is not fixed, have been proven to exj89], (fixed c) for lattice animald37(c)]. Finally, we mention the
and have been shown to satisfy the strict inequiBiy,37] generalization of EQq.(3.3), where a branching fugacity
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y=exp(—uw) replaces the NN interaction parametein the  scaling relation(or a very similar form obtains for a wide
SAW partition function, Eq(2.1) [40,41], range of random surface models. Dotsemtal. estimated
the genus-dependent amplitude numerically and argued that

C
. Ui the probabilityP(g) of a random surface having a gengis
c=0 ’
An increase in the number of branched polymer cycles P(g)~exp(— 8A)(5A)%/g!, (3.12

throughy leads to a phase transiti¢40] for a critical value

of y=y., where the critical exponents become alteredwhereA is proportional to the surface mags)( The data for

Again the analogy with interacting SAW'’s is striking. various random surface models show that the slopg(g)
There have apparently been no studies of the amplitude afersusg is near 1 as in Figs. 3 and 4 for contact-constrained

C, . for lattice animals, despite the more developed rigoroussAW's. It is not clear whether the small deviations from a

theory for animals in comparison with interacting SAW'’s. unit slope in both these models reflect real deviations or

Equation(2.159 suggests &-dependent prefactak(c), numerical uncertainty22]. Very similar numerical results
) ¢/t and conclusions for random plaquette surfaces have been
A(c)~[é(anima)]*/c!, n—e, (8393 found by Caselle and co-workef24].

The physical arguments for the distributi®®{g) of the
number of self-avoiding surface configurations given by Dot-
senkoet al. and Caselle and co-workers also provide a mo-
tivation for the SAW contact distribution function Eq.
(2.153, where the genus of the random surface is replaced
m(animald=3)=10.62, wuo(animald=3)=10.53, by the SAW contact numben. These physical arguments

(3.108  complement the deduction of E.159 in Sec. lll, based

on analytical self-consistency.

p(animald=2)=5.210, wuo(animald=2)=5.14. Finally, we mention that other aspects of the relation be-

(3.10b  tween the SAW contact number and the genus number
arry over as in the discussion betweerand the cyclomatic
ndex c. The connectivity constant is different for surfaces
with an unconstrained genus number from those with a fixed
genuq 22,43, the linear exponent spectrupis) (23,24, the
transition for a critical fugacity44], etc., are common fea-
tures of these problems.

In summary, the scaling of the number of SAW’s having
fixed number of contacts, the number of branched poly-
mers with a fixed cyclomatic indeg and the number of
random surfaces having a fixed geruexhibit similar scal-
ing behavior with polymer mass. This suggests that many
results, which are known properties for SAW'’s, should hold
for those more complex polymer structures and some inter-
esting properties of contact-constrained SAWs such as a
Q, g~n7(g)‘1[ﬂo(surface)]“, n—o, (3.113 spectrum of contact(m) exponents. These analogies also

' work in reverse, and interesting results are also implied for

Sanima)=In[ w(anima)/ uq(anima)]. (3.9b

We mention numerical estimates ofu(anima) and
uo(anima) for square and cubic latticg87(a),37(b)],

A rigorous derivation of the dependence of the lattice anima
amplitudeA(c) on ¢ would be interesting. In the meantime,
it should be useful to check E¢3.9) numerically.

Data relating to the amplitudA(c) have recently been
given for the closely related problem of self-avoiding ran-
dom plaquettes surfacg®2-24. Strong arguments have
been given that these surfaces belong to the lattice anim%I
universality clasg41], and these arguments are well sup-
ported by numerical studi¢d1,42. For random surfaces the
genus plays a role similar to the number of logpgclomatic
index of branched polymer22], and we would then expect
that the number of random surfaces with fixed ges, to
scale as

7(9)=%(g=0)+g, (3.11h  SAWSs.
yvheren is the number pf surface plaquette§ aogisurface ACKNOWLEDGMENTS
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